|
https://en.wikipedia.org/wiki/Octave_band
Analyzing a source on a frequency by frequency basis is possible but time consuming[citation needed]. The whole frequency range is divided into sets of frequencies called bands. Each band covers a specific range of frequencies. For this reason, a scale of octave bands and one-third octave bands has been developed. A band is said to be an octave in width when the upper band frequency is twice the lower band frequency. A one-third octave band is defined as a frequency band whose upper band-edge frequency (f2) is the lower band frequency (f1) times the cube root of two. Contents
Octave Bands[edit]Calculation[edit]%% Calculate Octave Bands in Matlabfcentre = 10^3 * (2 .^ [-6:4])fd = 2^(1/2);fupper = fcentre * fdflower = fcentre / fd
Naming[edit]Band Number | | Calculated Frequency | A-Weighting Adjustment | -1 | 16 Hz | 15.625 Hz | | 0 | 31.5 Hz | 31.250 Hz | -39.4 dB | 1 | 63 Hz | 62.500 Hz | -26.2 dB | 2 | 125 Hz | 125.000 Hz | -16.1 dB | 3 | 250 Hz | 250.000 Hz | -8.6 dB | 4 | 500 Hz | 500.000 Hz | -3.2 dB | 5 | 1k Hz | 1000.000 Hz | 0 dB | 6 | 2k Hz | 2000.000 Hz | 1.2 dB | 7 | 4k Hz | 4000.000 Hz | 1 dB | 8 | 8k Hz | 8000.000 Hz | -1.1 dB | 9 | 16k Hz | 16000.000 Hz | -6.6 dB | One-third octave bands[edit]Base 2 calculation[edit]%% Calculate Third Octave Bands (base 2) in Matlabfcentre = 10^3 * (2 .^ ([-18:13]/3))fd = 2^(1/6);fupper = fcentre * fdflower = fcentre / fd
Base 10 calculation[edit]%% Calculate Third Octave Bands (base 10) in Matlabfcentre = 10.^(0.1.*[12:43])fd = 10^0.05;fupper = fcentre * fdflower = fcentre / fd
Naming[edit]Band Number | Nominal Frequency | Base-2 Calculated Frequency | Base-10 Calculated Frequency | 1 | 16 Hz | 15.625 Hz | 15.849 Hz | 2 | 20 Hz | 19.686 Hz | 19.953 Hz | 3 | 25 Hz | 24.803 Hz | 25.119 Hz | 4 | 31.5 Hz | 31.250 Hz | 31.623 Hz | 5 | 40 Hz | 39.373 Hz | 39.811 Hz | 6 | 50 Hz | 49.606 Hz | 50.119 Hz | 7 | 63 Hz | 62.500 Hz | 63.096 Hz | 8 | 80 Hz | 78.745 Hz | 79.433 Hz | 9 | 100 Hz | 99.213 Hz | 100 Hz | 10 | 125 Hz | 125.000 Hz | 125.89 Hz | 11 | 160 Hz | 157.490 Hz | 158.49 Hz | 12 | 200 Hz | 198.425 Hz | 199.53 Hz | 13 | 250 Hz | 250.000 Hz | 251.19 Hz | 14 | 315 Hz | 314.980 Hz | 316.23 Hz | 15 | 400 Hz | 396.850 Hz | 398.11 Hz | 16 | 500 Hz | 500.000 Hz | 501.19 Hz | 17 | 630 Hz | 629.961 Hz | 630.96 Hz | 18 | 800 Hz | 793.701 Hz | 794.43 Hz | 19 | 1 kHz | 1000.000 Hz | 1000 Hz | 20 | 1.25 kHz | 1259.921 Hz | 1258.9 Hz | 21 | 1.6 kHz | 1587.401 Hz | 1584.9 Hz | 22 | 2 kHz | 2000.000 Hz | 1995.3 Hz | 23 | 2.5 kHz | 2519.842 Hz | 2511.9 Hz | 24 | 3.150 kHz | 3174.802 Hz | 3162.3 Hz | 25 | 4 kHz | 4000.000 Hz | 3981.1 Hz | 26 | 5 kHz | 5039.684 Hz | 5011.9 Hz | 27 | 6.3 kHz | 6349.604 Hz | 6309.6 Hz | 28 | 8 kHz | 8000.000 Hz | 7944.3 Hz | 29 | 10 kHz | 10079.368 Hz | 10 kHz | 30 | 12.5 kHz | 12699.208 Hz | 12.589 kHz | 31 | 16 kHz | 16000.000 Hz | 15.849 kHz | 32 | 20 kHz | 20158.737 Hz | 19.953 kHz | See also[edit]References[edit]
|
|