拙网论坛

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 172|回复: 0

Quantization Noise and Signal-Noise Ratio (SNR)

[复制链接]

949

主题

1001

帖子

3736

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
3736
发表于 2018-7-26 19:09:03 | 显示全部楼层 |阅读模式
What do you need to know to understand this topic?
  • Root-Mean Square (RMS)
  • Nyquist Theorem
What is Quantization Noise?
When an Analog-Digital Converter (ADC) converts a continuous signal into a discrete digital representation, there is a range of input values that produces the same output. That range is called quantum ($Q$) and is equivalent to the Least Significant Bit (LSB). The difference between input and output is called the quantization error. Therefore, the quantization error can be between $\pm Q/2$.
Any value of the error is equally likely, so it has a uniform distribution ranging from $-Q/2$ to $+Q/2$. Then, this error can be considered a quantization noise with RMS: $$ v_{qn} = \sqrt{\frac{1}{Q}\int_{-Q/2}^{+Q/2}x^2dx}=\sqrt{\frac{1}{Q}\left[\frac{x^3}{3}\right]_{-Q/2}^{+Q/2}} = \sqrt{\frac{Q^2}{2^3 3} + \frac{Q^2}{2^3 3}} = \frac{Q}{\sqrt{12}}$$
What is the frequency spectrum of the quantization noise?
We know the quantization noise power is $v_{qn}^2$, but where is it concentrated or spread in the frequency domain? The quantization error creates harmonics in the signal that extend well above the Nyquist frequency. Due to the sampling step of an ADC, these harmonics get folded to the Nyquist band, pushing the total noise power into the Nyquist band and with an approximately white spectrum (equally spread across all frequencies in the band).

How does the Signal-Noise Ratio (SNR) relates to the number of bits in the digital representation?
Assuming an input sinusoidal with peak-to-peak amplitude $V_{ref}$, where $V_{ref}$ is the reference voltage of an N-bit ADC (therefore, occupying the full-scale of the ADC), its RMS value is $$V_{rms} = \frac{V_{ref}}{2\sqrt{2}} = \frac{2^NQ}{2\sqrt{2}}.$$ where $N$ is the number of bits available for discretization. The relation $V_{ref} = 2^NQ$ comes from the fact that the range $V_{ref}$ is divided among $2^N$ steps, each with quantum $Q$. To calculate the Signal-Noise Ratio, we divide the RMS of the input signal by the RMS of the quantization noise: $$SNR = 20\log\left(\frac{V_{rms}}{v_{qn}}\right) = 20\log\left(\frac{\frac{2^NQ}{2\sqrt{2}}}{\frac{Q}{\sqrt{12}}}\right) = 20\log\left(\frac{2^N\sqrt{12}}{2\sqrt{2}}\right)$$ $$ = 20\log\left(2^N\right) + 20\log\left(\frac{\sqrt{6}}{2}\right) = 6.02N + 1.76 (dB).$$
In fact, the equation: $$SNR = 6.02N + 1.76 (dB)$$ generalizes to any system using a digital representation. So, a microprocessor representing values with N bits will have a SNR defined by the above formula.
If I helped you in some way, please help me back by liking this website on the bottom of the page or clicking on the link below. It would mean the world to me!

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|抱朴守拙BBS

GMT+8, 2025-5-26 05:02 , Processed in 0.194415 second(s), 18 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表